TEORÍA DE CONJUNTOS
La Teoría de Conjuntos es una teoría matemática, que estudia básicamente a un cierto tipo de objetos llamados conjuntos y algunas veces, a otros objetos denominados no conjuntos, así como a los problemas relacionados con estos.
El concepto de conjunto es intuitivo y se podría definir como una "agrupación bien definida de objetos no repetidos y no ordenados"; así, se puede hablar de un conjunto de personas, ciudades, gafas, lapiceros o del conjunto de objetos que hay en un momento dado encima de una mesa. Un conjunto está bien definido si se sabe si un determinado elemento pertenece o no al conjunto. El conjunto de los bolígrafos azules está bien definido, porque a la vista de un bolígrafo se puede saber si es azul o no. El conjunto de las personas altas no está bien definido, porque a la vista de una persona, no siempre se podrá decir si es alta o no, o puede haber distintas personas, que opinen si esa persona es alta o no lo es. En el siglo XIX, según Frege, los elementos de un conjunto se definían sólo por tal o cual propiedad. Actualmente la teoría de conjuntos está bien definida por el sistema ZFC.odificar.
El concepto de conjunto es intuitivo y se podría definir como una "agrupación bien definida de objetos no repetidos y no ordenados"; así, se puede hablar de un conjunto de personas, ciudades, gafas, lapiceros o del conjunto de objetos que hay en un momento dado encima de una mesa. Un conjunto está bien definido si se sabe si un determinado elemento pertenece o no al conjunto. El conjunto de los bolígrafos azules está bien definido, porque a la vista de un bolígrafo se puede saber si es azul o no. El conjunto de las personas altas no está bien definido, porque a la vista de una persona, no siempre se podrá decir si es alta o no, o puede haber distintas personas, que opinen si esa persona es alta o no lo es. En el siglo XIX, según Frege, los elementos de un conjunto se definían sólo por tal o cual propiedad. Actualmente la teoría de conjuntos está bien definida por el sistema ZFC.odificar.
CONJUNTO
Un conjunto es la agrupación, clase, o colección de objetos o en su defecto de elementos que pertenecen y responden a la misma categoría o grupo de cosas, por eso se los puede agrupar en el mismo conjunto. Esta relación de pertenencia que se establece entre los objetos o elementos es absoluta y posiblemente discernible y observable por cualquier persona. Entre los objetos o elementos susceptibles de integrar o conformar un conjunto se cuentan por supuesto cosas físicas, como pueden ser las mesas, sillas y libros, pero también por entes abstractos como números o letras.
TIPOS O CLASES DE CONJUNTOS
Conjunto Finito: Es el conjunto al que se le puede determinar su cardinalidad o puede llegar a contar su ultimo elemento.
Ejemplo:
M= {*/x es divisor de 24}
M= {1,2,3,4,6,8,12,24}
Conjunto Infinito: Es el conjunto que, por tener muchísimos elementos, no se le puede llegar a contar su ultimo elemento.
Ejemplo:
A= {*/x sea grano de sal}
Conjunto Vacío: Es el conjunto cuya cardinalidad es cero ya que carece de elementos. El símbolo del conjunto vacío O o { }.
Ejemplo:
C={*/x sea habitantes del sol}
Conjunto Unitario: Es el conjunto que solo tiene un elemento. Su cardinalidad es uno (1).
Ejemplo:
D={*/x sea vocal de la palabra "pez"}
OPERACIONES CON CONJUNTOS
UNIÓN DE CONJUNTOS:
La unión de los conjuntos A y B es el conjunto formado por todos los elementos que pertenecen a A o a B o a ambos. Se denota: A U B. La unión de conjuntos se define como:
A U B = {x / x € A o x € B}
INTERSECCIÓN DE CONJUNTOS:
La intersección es el conjunto formado por los elementos que son comunes entre dos o más conjuntos dados. Se denota por A∩B, que se lee: A intersección B. La intersección de A y B también se puede definir:
A∩ B = { x / x € A y x € B }
Ejemplo:
M= {*/x es divisor de 24}
M= {1,2,3,4,6,8,12,24}
Conjunto Infinito: Es el conjunto que, por tener muchísimos elementos, no se le puede llegar a contar su ultimo elemento.
Ejemplo:
A= {*/x sea grano de sal}
Conjunto Vacío: Es el conjunto cuya cardinalidad es cero ya que carece de elementos. El símbolo del conjunto vacío O o { }.
Ejemplo:
C={*/x sea habitantes del sol}
Conjunto Unitario: Es el conjunto que solo tiene un elemento. Su cardinalidad es uno (1).
Ejemplo:
D={*/x sea vocal de la palabra "pez"}
OPERACIONES CON CONJUNTOS
UNIÓN DE CONJUNTOS:
La unión de los conjuntos A y B es el conjunto formado por todos los elementos que pertenecen a A o a B o a ambos. Se denota: A U B. La unión de conjuntos se define como:
A U B = {x / x € A o x € B}
INTERSECCIÓN DE CONJUNTOS:
La intersección es el conjunto formado por los elementos que son comunes entre dos o más conjuntos dados. Se denota por A∩B, que se lee: A intersección B. La intersección de A y B también se puede definir:
A∩ B = { x / x € A y x € B }
No hay comentarios.:
Publicar un comentario