martes, 3 de junio de 2014

Bloque IV

area bajo la curva normal

DISTRIBUCION NORMAL

La distribución normal es muy importante por lo siguiente:

1. Es la distribución a la que se aproximan la mayoría de los fenómenos físicos, Químicos, Biólogicos
2. Se ha tomado como base en la inferencia estadística paramétrica

3. Otras distribuciones bajo ciertas circunstancias se pueden aproximar a la normal

4. Es la base para definir otras distribuciones de importancia tales como la Chi cuadrada, t de Student y F de Fisher.

CARACTERISTICAS DE LA DISTRIBUCION NORMAL

1. Forma
Es una campana simétrica con respecto a su centro
La curva tiene un solo pico; por tanto, es unimodal.
La media de una población distribuida normalmente cae en el centro de su curva normal.
Debido a la simetría de la distribución normal de probabilidad, la mediana y la moda de la distribución se encuentran también en el centro; en consecuencia, para una curva normal, la media, la mediana y la moda tienen el mismo valor.
Los dos extremos de la distribución normal de probabilidad se extienden indefinidamente y nunca tocan el eje horizontal

2. Parámetros
Está caracterizada por dos parámetros

a).- Parámetro de localización: La media
b).- Parámetro de forma: La varianza


3. Función de densidad

Para determinar las áreas bajo la curva de función de densidad normal se requiere integrar la ecuación anterior, desafortunadamente no existe una solución exacta para la integral, por lo que su evaluación solamente puede obtenerse utilizando métodos de aproximación. Por esta razón, se aprovechó la propiedad de transformación de cualquier curva normal a la NORMAL ESTANDAR utilizando una nueva variable aleatoria Z llamada variable aleatoria normal estándar.

Si X ~ N ( µ, s2 ) entonces X puede transformarse en Z



AREAS BAJO LA CURVA NORMAL

No importa cuáles sean los valores de la para una distribución de probabilidad normal, el área total bajo la curva es 1.00, de manera que podemos pensar en áreas bajo la curva como si fueran probabilidades. Matemáticamente es verdad que:

1.Aproximadamente 68% de todos los valores de una población normalmente distribuida se encuentra dentro de desviación estándar de la media.

2. Aproximadamente 95.5 % de todos los valores de una población normalmente distribuida se encuentra dentro de desviación estándar de la media.

3. Aproximadamente 99.7 % de todos los valores de una población normalmente distribuida se encuentra dentro de desviación estándar de la media.










USO DE LA TABLA DE DISTRIBUCIÓN DE PROBABILIDAD NORMAL ESTÁNDAR

DISTRIBUCIÓN DE PROBABILIDAD NORMAL ESTÁNDAR
Áreas bajo la distribución de probabilidad Normal Estándar
entre la media y valores positivos de Z
m = 0 y s²=1

Observe en esta tabla la localización de la columna identificada con z. El valor de z está derivado de la formula:


X = valor de la variable aleatoria que nos preocupa
media de la distribución de la variable aleatoria
= desviación estándar de la distribución
Z = número de desviaciones estándar que hay desde x a la media de la distribución

Utilizamos Z en lugar del ‘ número de desviaciones estándar’ porque las variables aleatorias normalmente distribuidas tienen muchas unidades diferentes de medición: dólares, pulgadas, partes por millón, kilogramos, segundos. Como vamos a utilizar una tabla, la tabla I, hablamos en términos de unidades estándar (que en realidad significa desviaciones estándar), y denotamos a éstas con el símbolo z.

X
-25 0 25 50 75 100 125
----------------------------------------- Z =
-3 -2 -1 0 1 2 3


La tabla representa las probabilidades o áreas bajo la curva normal calculadas desde la hasta los valores particulares de interés X. Usando la ecuación de Z, esto corresponde a las probabilidades o áreas bajo la curva normal estandarizada desde la media ( = 0) hasta los valores transformados de interés Z.
Sólo se enumeran entradas positivas de Z en la tabla , puesto que para una distribución simétrica de este tipo con una media de cero, el área que va desde la media hasta +Z (es decir, Z desviaciones estándar por encima de la media) debe ser idéntica al área que va desde la media hasta –Z (es decir, Z desviaciones estándar por debajo de la media).
También podemos encontrar la tabla que indica el área bajo la curva normal estándar que corresponde a P(Z < z) para valores de z que van de –3.49 a 3.49.
Al usar la tabla observamos que todos los valores Z deben registrarse con hasta dos lugares decimales. Por tanto, nuestro valor de interés particular Z se registra como +.2. para leer el área de probabilidad bajo la curva desde la media hasta Z = +.20, podemos recorrer hacia abajo la columna Z de la tabla hasta que ubiquemos el valor de interés Z. Así pues, nos detenemos en la fila Z = .2. A continuación, leemos esta fila hasta que intersecamos la columna que contiene el lugar de centésimas del valor Z. Por lo tanto, en la tabla, la probabilidad tabulada para Z = 0.20 corresponde a la intersección de la fila Z = .2 con la columna Z = .00 como se muestra.



lunes, 14 de abril de 2014

Bloque III

ESPACIO MUESTRAL. El conjunto de todos los resultados posibles de un experimento estadístico
denotado por “S” o “Ω ”

VARIABLE. Se denomina variable a la entidad que puede tomar un valor cualesquiera durante la
duración de un proceso dado. Si la variable toma un solo valor durante el proceso se llama constante.

VARIABLE ALEATORIA: Es una función que asocia un número real a cada elemento del espacio
muestral. Es decir son aquellas que pueden diferir de una respuesta a otra.

Una variable aleatoria se puede clasificar en:

 Variable aleatoria discreta.

 Variable aleatoria continua.

Variable aleatoria discreta. Una variable discreta proporciona datos que son llamados datos
cuantitativos discretos y son respuestas numéricas que resultan de un proceso de conteo.


La cantidad de alumnos regulares en un grupo escolar.
El número de águilas en cinco lanzamientos de una moneda.
Número de circuitos en una computadora.
El número de vehículos vendidos en un día, en un lote de autos

Variable aleatoria continua. Es aquella que se encuentra dentro de un intervalo comprendido entre dos
valores cualesquiera; ésta puede asumir infinito número de valores y éstos se pueden medir.

La estatura de un alumno de un grupo escolar.
El peso en gramos de una moneda.
La edad de un hijo de familia.
Las dimensiones de un vehículo.

Distribución binomial
En estadística, la distribución binomial es una distribución de probabilidad discreta que cuenta el número de éxitos en una secuencia de n ensayos de Bernoulli independientes entre sí, con una probabilidad fija p de ocurrencia del éxito entre los ensayos. Un experimento de Bernoulli se caracteriza por ser dicotómico, esto es, sólo son posibles dos resultados. A uno de estos se denomina éxito y tiene una probabilidad de ocurrencia p y al otro, fracaso, con una probabilidad q = 1 - p. En la distribución binomial el anterior experimento se repite n veces, de forma independiente, y se trata de calcular la probabilidad de un determinado número de éxitos. Para n = 1, la binomial se convierte, de hecho, en una distribución de Bernoulli.

Para representar que una variable aleatoria X sigue una distribución binomial de parámetros n y p, se escribe:

X \sim B(n, p)\,
La distribución binomial es la base del test binomial de significación estadística.

 Distribución Binomial

Los experimentos que tienen este tipo de distribución tienen las siguientes características:
a)      Al realizar un experimento con este tipo de distribución, se esperan dos tipos de resultados.
b)      Las probabilidades asociadas a cada uno de los resultados no son constantes.
c)      Cada ensayo o repetición del experimento no es independiente de los demás.
d)      El número de repeticiones del experimento (n) es constante.


Ejemplo:
En una urna o recipiente hay un total de N objetos, entre los cuales hay una cantidad de objetos que son defectuosos, si se seleccionan de esta urna n objetos al azar, y sin reemplazo, ¿cuál es la probabilidad de obtener xobjetos defectuosos?
 Solución:

Luego;


                                   

donde:
p(x,n) = probabilidad de obtener x objetos defectuosos de entre n seleccionados

muestras de objetos en donde hay x que son defectuosos y n-x buenos

todas las muestras posibles de seleccionar de n objetos tomadas de entre N objetos en total = espacio muestral


Considerando que en la urna hay un total de 10 objetos, 3 de los cuales son defectuosos, si de seleccionan 4 objetos al azar, ¿cuál es la probabilidad de que 2 sean defectuosos?

Solución:

N = 10 objetos en total
a = 3 objetos defectuosos
n = 4 objetos seleccionados en muestra
x = 2 objetos defectuosos deseados en la muestra
       


                 

Esperanza Matemática

En estadística la esperanza matemática (también llamada esperanzavalor esperadomedia poblacional o media) de una variable aleatoria  X , es el número \operatorname{E}[X] que formaliza la idea de valor medio de un fenómeno aleatorio.
Cuando la variable aleatoria es discreta, la esperanza es igual a la suma de la probabilidad de cada posible suceso aleatorio multiplicado por el valor de dicho suceso. Por lo tanto, representa la cantidad media que se "espera" como resultado de un experimento aleatorio cuando la probabilidad de cada suceso se mantiene constante y el experimento se repite un elevado número de veces. Cabe decir que el valor que toma la esperanza matemática en algunos casos puede no ser "esperado" en el sentido más general de la palabra - el valor de la esperanza puede ser improbable o incluso imposible.
Por ejemplo, el valor esperado cuando tiramos un dado equilibrado de 6 caras es 3,5. Podemos hacer el cálculo

\begin{align}
\operatorname{E}(X) = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6}
+ 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6}\\[6pt] = \frac{1 + 2 + 3 + 4 + 5 + 6}{6} = 3,5
\end{align}
y cabe destacar que 3,5 no es un valor posible al rodar el dado. En este caso, en el que todos los sucesos son de igual probabilidad, la esperanza es igual a la media aritmética.
Una aplicación común de la esperanza matemática es en las apuestas o los juegos de azar. Por ejemplo, la ruleta americana tiene 38 casillas equiprobables. La ganancia para acertar una apuesta a un solo número paga de 35 a 1 (es decir, cobramos 35 veces lo que hemos apostado y recuperamos la apuesta, así que recibimos 36 veces lo que hemos apostado). Por tanto, considerando los 38 posibles resultados, la esperanza matemática del beneficio para apostar a un solo número es:

\left( -1 \cdot \frac{37}{38} \right) + \left( 35 \cdot \frac{1}{38} \right),
que es -0,0526 aproximadamente. Por lo tanto uno esperaría, en media, perder unos 5 céntimos por cada euro que apuesta, y el valor esperado para apostar 1 euro son 0.9474 euros. En el mundo de las apuestas, un juego donde el beneficio esperado es cero (no ganamos ni perdemos) se llama un "juego justo".
Nota: El primer paréntesis es la "esperanza" de perder tu apuesta de 1€, por eso es negativo el valor. El segundo paréntesis es la esperanza matemática de ganar los 35€. La esperanza matemática del beneficio es el valor esperado a ganar menos el valor esperado a perder.

Teorema de Balles

En la teoría de la probabilidad el teorema de Bayes es un resultado enunciado por Thomas Bayes en 17631 que expresa la probabilidad condicional de un evento aleatorio A dado B en términos de la distribución de probabilidad condicional del evento B dado A y la distribución de probabilidad marginal de sólo A.

En términos más generales y menos matemáticos, el teorema de Bayes es de enorme relevancia puesto que vincula la probabilidad de A dado B con la probabilidad de B dado A. Es decir que sabiendo la probabilidad de tener un dolor de cabeza dado que se tiene gripe, se podría saber (si se tiene algún dato más), la probabilidad de tener gripe si se tiene un dolor de cabeza, muestra este sencillo ejemplo la alta relevancia del teorema en cuestión para la ciencia en todas sus ramas, puesto que tiene vinculación íntima con la comprensión de la probabilidad de aspectos causales dados los efectos observados.

Ejemplos:





miércoles, 12 de febrero de 2014

TUTORIAL DE APLICACIÓN DE COMBINACIONES Y PERMUTACIONES

Bien aquí una explicación de el uso de combinaciones y permutaciones en la vida real es un ejemplo claro de como aplicarlas a la vida diaria pues espero y les quede claro.

martes, 11 de febrero de 2014

TEORIA DE CONJUNTOS

TEORÍA DE CONJUNTOS
La Teoría de Conjuntos es una teoría matemática, que estudia básicamente a un cierto tipo de objetos llamados conjuntos y algunas veces, a otros objetos denominados no conjuntos, así como a los problemas relacionados con estos.

El concepto de conjunto es intuitivo y se podría definir como una "agrupación bien definida de objetos no repetidos y no ordenados"; así, se puede hablar de un conjunto de personas, ciudades, gafas, lapiceros o del conjunto de objetos que hay en un momento dado encima de una mesa. Un conjunto está bien definido si se sabe si un determinado elemento pertenece o no al conjunto. El conjunto de los bolígrafos azules está bien definido, porque a la vista de un bolígrafo se puede saber si es azul o no. El conjunto de las personas altas no está bien definido, porque a la vista de una persona, no siempre se podrá decir si es alta o no, o puede haber distintas personas, que opinen si esa persona es alta o no lo es. En el siglo XIX, según Frege, los elementos de un conjunto se definían sólo por tal o cual propiedad. Actualmente la teoría de conjuntos está bien definida por el sistema ZFC.odificar.

CONJUNTO

Un conjunto es la agrupación, clase, o colección de objetos o en su defecto de elementos que pertenecen y responden a la misma categoría o grupo de cosas, por eso se los puede agrupar en el mismo conjunto. Esta relación de pertenencia que se establece entre los objetos o elementos es absoluta y posiblemente discernible y observable por cualquier persona. Entre los objetos o elementos susceptibles de integrar o conformar un conjunto se cuentan por supuesto cosas físicas, como pueden ser las mesas, sillas y libros, pero también por entes abstractos como números o letras.

TIPOS O CLASES DE CONJUNTOS

Conjunto Finito: Es el conjunto al que se le puede determinar su cardinalidad o puede llegar a contar su ultimo elemento.

Ejemplo:

M= {*/x es divisor de 24}
M= {1,2,3,4,6,8,12,24}

Conjunto Infinito: Es el conjunto que, por tener muchísimos elementos, no se le puede llegar a contar su ultimo elemento.

Ejemplo:

A= {*/x sea grano de sal}

Conjunto Vacío: Es el conjunto cuya cardinalidad es cero ya que carece de elementos. El símbolo del conjunto vacío O o { }.

Ejemplo:

C={*/x sea habitantes del sol}

Conjunto Unitario: Es el conjunto que solo tiene un elemento. Su cardinalidad es uno (1).

Ejemplo:

D={*/x sea vocal de la palabra "pez"}


OPERACIONES CON CONJUNTOS

UNIÓN DE CONJUNTOS:
La unión de los conjuntos A y B es el conjunto formado por todos los elementos que pertenecen a A o a B o a ambos. Se denota: A U B. La unión de conjuntos se define como:

                                                                 A U B = {x / x € A o x € B}

INTERSECCIÓN DE CONJUNTOS: 

La intersección es el conjunto formado por los elementos que son comunes entre dos o más conjuntos dados. Se denota por  A∩B, que se lee: A intersección B. La intersección de A y B también se puede definir:

                                                                  A∩ B = { x / x € A y x € B }